Seasonal and Diurnal Variations of Hg^o and its Dry Deposition in New England Huiting Mao, Robert Talbot, Jeff Sigler, Barkley Sive and Jennifer Hegarty Mao et al., Atmospheric Chemistry and Physics, 8, 1403-1421, 2008. ## **Atmospheric Mercury Basics** - Chemical forms: Hg^o, RGM (HgCl₂ + HgBr₂+ HgOBr+ ...), and Hg^P - Marine: 1.6 ng m⁻³ over the North Atlantic [*Laurier et al.*, 2007], 1.6 4.7 ng m⁻³ over the North Pacific [*Laurier et al.*, 2003], and 0.4 11.2 ng m⁻³ over the Mediterranean Sea [*Sprovieri et al.*, 2003] - Land: 1.6 5.1 ng m⁻³ [Sigler and Lee, 2006; Valente et al., 2007; Kim et al., 2005] - Diurnal annual variability is the key to understanding the regional budget of mercury. - Dry depositional and chemical loss of Hg^o are highly uncertain. ## **Measurements and Data** - Hg°, CO, O₃, NO, NOy, CO₂, SO₂, and CH₄ measured at Thompson Farm, Pac Monadnock and Appledore Island. - Tekran model 2537A cold vapor atomic fluorescence spectrometer, 5-minute time resolution, LOD of 5-10 ppqv. - An internal permeation tube calibration (±5% reproducibility) verified every six months using syringe injection from the headspace of a thermoelectrically cooled Hg° reservoir (Tekran model 2505). - Standard additions of Hg^o performed on ambient air during day and night to capture variations in temperature and specific humidity. - Hg⁰: TF starting on 01 November 2003; PM 28 February 2005; AI 08 July 8 06 September 2005. Data presented in UT. - Daily VOCs measurements at TF during Jan. 2004 present. - Hourly VOCs measurements at TF and AI in summers 2004 and 2005. ## Seasonal and Diurnal Variation is Pronounced $(1 \text{ ng m}^{-3} = 112 \text{ ppqv})$ 11/1/03 3/1/04 7/1/04 11/1/04 3/1/05 7/1/05 11/1/05 3/1/06 7/1/06 11/1/06 3/1/07 Thompson Farm #### **Pac Monadnock** (700 m, 185 km from ocean) **Nighttime Depletion and Estimation of Dry Depositional** Losses -Important Removal Pathways Poorly Characterized Δ Hg°/ Δ NOy = 3.2 ppqv/ppbv Investigation of nighttime removal. Linear decreasing trends in Hg and NO_y at night indicates a common loss mechanism. Dry deposition $\Delta NO_y = 6 \text{ ppbv}$ $\Delta Hg^o/\Delta NO_y = 3.2 \text{ ppqv/ppbv}$ $\rightarrow \Delta Hg^o \sim 20 \text{ ppqv}$ $\leftarrow \text{ net of anthrop., chem., dry dep.}$ | | | Daytime | Night | Daily | |---|-------------------|---------|-------|------------------------------| | 7.5x10 ⁻¹⁹ cm ³ molecule ⁻¹ s ⁻¹ —— | $-\Omega_3^{\ 1}$ | 4.16 | 2.66 | 7.82 | | 3.2x10 ⁻²⁰ cm ³ molecule ⁻¹ s ⁻¹ —— | $-O_3^2$ | 0.17 | 0.11 | 7.82
0.28
0.50
0.78 | | | OH | 0.50 | - | 0.50 | | | NO_3 | - | 3.5 | 3.5 | - Total annual emission of mercury in the Strafford County, NH (1000 km²) was 6848.38 g [NESCAUM, 2005] → ~ 9 ppqv Hg⁰ (assuming PBL=125 m) - The dry deposition velocity of Hg° was estimated to be 0.17 cm s⁻¹ in 2004 and 0.20 cm s⁻¹ in 2005. - → Compare to 0.01 cm s⁻¹ in literature # **Contrasting Interannual Variability** ### Steeper warm season decline rate in 2005 than in 2004 Processes on time scales >weekly might account for the more pronounced decreasing trend in 2005. #### Hypothesis: The dry conditions in summer 2005 may have contributed to the stronger decreasing trend.