Contrasting Effects of a Warm Winter on Carbon Fluxes Across Land Cover Types in NH, USA

Rebecca Sanders-DeMott, <u>Elizabeth Burakowski</u>, Andrew Ouimette, Lucie Lepine, Sean Fogarty, Emily Wilcox, Taylor Conte, Alexandra Contosta, Scott Ollinger

University of New Hampshire

Lamprey River Symposium January 8, 2018 Durham, NH

New England consists of dynamic mixed landscape

- New England dominated by forests
- Forest land declining: development and suburbanization
- Potential for agricultural expansion?
- Future land cover change uncertain

Land cover feeds back to climate

Warming is changing winters in New England

Warming more pronounced in winter

Projected declines in snow cover

Winter climate influences ecosystems

Winter C losses account for

5-12% of annual respiration

Temperature sensitivity of respiration varies between growing season and winter

Winter climate influences ecosystems

Winter warming is complex:

- reduced snowpack depth
- earlier snowmelt
- variable soil temperatures

Observed to

- decrease (Hu et al 2010)
- increase (Yu et al 2016)
- not affect C flux (Galvagno et al 2013)

A Natural Experiment: Record-Breaking Winter 2015-2016

The Washington Post America's year without a winter: The 2015-2016 season was the warmest on record

8.6 °F (4.7 °C) above long term average

How does land cover type affect response of to a very warm winter with little snow?

- winter-spring cumulative C fluxes
- timing of spring transitions

Site Description

Grassland

managed hayfield for feed C3 non-artic grasses switchgrass, cordgrass, alfalfa

Forest

mature mixed temperate 50-50 conifer/deciduous red maple, red oak, white pine

Land Cover

Developed Agriculture Forest

Water/wetland Non-vegetated

Carbon Fluxes: Eddy Covariance

February-April Flux Data - 3 years

• Grassland: 2014, 2016-2017

• Forest: 2015-2017

Lucie Lepine

Winter-Spring 2016 warm with little snowpack

Winter-Spring 2016 warm with little snowpack

Contrasting Response of Cumulative C Flux

Contrasting Response of Cumulative C Flux

Contrasting Response of Cumulative C Flux

Flexibility in C uptake timing varies by vegetation

Summary

Warm winter had contrasting effects on C fluxes during winter-spring transition

- Grassland C sink
- Forest C source

Driven by snow and soil temperature rather than air

Implications

- Grasses activate C uptake in winter if air is warm and ground is snow-free
- Forests begin C loss early, but C uptake is constrained by phenology
- Contrasting responses could shift timing of C uptake across dynamic landscapes
- Future directions: explore mechanisms, new data sources and modeling

Acknowledgements

Andrew Ouimette
Lucie Lepine
Sean Fogarty
Elizabeth Burakowski

Taylor Conte Alexandra Contosta Scott Ollinger Jack Hastings

Mean annual C cycles (2014-2017)

Grassland: Photosynthesis in the absence of snow

Grassland: Photosynthesis in the absence of snow

Forest: Temperature sensitivity of respiration

