Long Term Observations in the Ipswich and Parker River Watersheds, MA

Plum Island Estuary (PIE) LTER

Why Am I Here Talking About Watersheds in Massachusetts?

- PIE watersheds similar to Lamprey
 - Flat, coastal plain watersheds
 - Similar climate
 - High % wetlands
 - Urbanizing (30% urban in 2001)
- Hydrologic and water quality responses to land use change are similar to those in the Lamprey
 - Based on headwater observations
- Are the output (basin mouth) responses similar or dissimilar?
- Use multiple basins to understand mechanisms
 - River network processes
 - Experiments and Modeling

Core Monitoring – Basin outlets

- Characterize water, nutrient, carbon inputs to PIE
 - Monitoring at the Ipswich and Parker Dams

Core Monitoring - Headwaters

Forested (2001)

Wetland (2005)

Suburban (2001)

Basin	Area (Km²)	% Agr.	% Forest	% Wetland	% Ind.	% Resid.
Cart Creek	3.96	8	57	19	5	11
Saw Mill Br.	4.02	4	17	4	2	72
Cedar Swamp	1.40	6	36	49	0	9

Core Monitoring: Sample Regime

- Frequency
 - Monthly grabs (since 1993)
 - Sigma Autosampler (since 2002)
 - Two-day Composites (dams)
 - Daily and/or Monthly Composites (headwaters)
 - Continuous YSI/Hobo data logger
- Measurements
 - Discharge, Water temperature
 - NO3, NH4, TDN, PON, TN
 - SRP, DOP, TP
 - DOC, POC
 - TSS
 - Cond, D.O., pH (2001-2004)
- Monthly synoptic surveys (2000-2002)

Long Term N and C Observations

Detailed Time Series

urban

Ipswich Mouth

forest

wetland

Integration and Synthesis

River Network Modeling

- Integration and Synthesis
 - Spatially distributed river network models
 - Mixing of inputs, processing

River Network Interactions

River Network N Removal Model (Spatially Distributed, Time Varying)

DIN Loading (+ LINX process rates)

 $R = 1 - \exp(-U/(C^*H_I))$

Discharge Category (m³ s-1)	Annual runoff (%)	Annual inputs (%)	Annual exports (%)	Annual removal (%)	Inputs in flow category removed (%)
<2	6.9	12.6	8.5	35.3	42.5
2-5	19.7	27.2	25.6	35.7	20.0
>5	73.5	60.3	65.9	28.9	7.3

Network DIN removal is saturating

Results from different scenarios of N inputs to the river network using the Ipswich model (2000-2004 hydrology)

Further increases in inputs will lead to disproportionate increases in exports

Ongoing Efforts

- What are the controls of aquatic denitrification rates across stream scale?
 - NSF-Ecosystems (UNH,MBL,Penn State collaboration)
- What are the mechanisms by which environmental responses feedback to influence societal actions?
 - NSF-Coupled Human Natural Systems (Clark U., UNH, MBL collaboration)
- Responses and influences of higher trophic levels
 - Beaver activity (trapping laws, beaver explosion, hydro/bgc responses)
 - Herring runs (dams, low flows, restocking, water quality)

Questions?

Flow Variability

Ipswich Discharge

Sampling time series now includes the flood of record based on gauging since 1934

Nitrate vs. DOC

- -Nitrate and DOC are highly correlated in wetland but not urban system.
- -A wetland signal is apparent at the mouth of the Ipswich.
- -High carbon exports from Ipswich associated with low inorganic nutrients.

Denitrification Saturates

□ Uptake Velocity (U/C) declines with increasing NO₃

Michaelis-Menten Parameters: U = Umax C / (Ks + C)

		Observed	MM1	MM2	MM3
ks	ugN/L	416	252	1266	8900
Umax	mg/m2/d	70.3	48.3	109	408

Concentrations vs. Discharge

Concentration vs. Flow – Ipswich Dam

Complex relationship between concentration and flow levels

- Highest concentrations at intermediate flows (flushing)
- DIN greatly reduced during low flows (denitrification)
- Flood of record has nutrient levels in line with other peak flows
- DIN concentrations are depressed at $\sim 10 \text{ m}^3 \text{ s}^{-1}$
 - -Source limitation? (Williams et al. 2004)
 - -Floodplain removal? (Wollheim et al. in preparation)