Current Research in the Lamprey River Watershed

William H. McDowell
Michelle Daley
University of New Hampshire

Research Questions

- 1. Are there long-term trends in Lamprey River chemistry driven by suburbanization?
- 2. Can variability in sub-basin surface water and groundwater chemistry be predicted by watershed attributes?
- 3. What drives long-term N balance in the Lamprey River watershed?

Lamprey River Hydrologic Observatory

Lamprey Stream Flow

- Lamprey at Packers Falls USGS July 1934 to present
- WHB in Lee Matt Davis (UNH) 2006 to present
- North River in Lee (near Epping)
 - USGS from June 2004 to Oct 2006
 - Weekly measurements made by UNH since Oct 2006

Well Fields

James Farm – Est. 1995

WHB - Est. 2004

Precipitation Collection

Volunteer Precipitation Monitoring Established October 2003

Precipitation Chemistry
Collection Established
November 2003

Sampling Category	Parameters Measured
3 Weekly Stream Sites (Lamprey since 9/99; WHB and North River since 2004)	DOC, DON, NO ₃ , NH ₄ , PO ₄ , SiO ₂ , CI, SO ₄ , Na, Mg, K, Ca, TP, TDP, pH, SC, DO
Additional Parameters for the Lamprey (since 10/02)	DIC, TSS, Particulate C and Particulate N
13 Monthly Stream Sites (weekly during 2004; monthly since 2005)	DOC, DON, NO ₃ , NH ₄ , PO ₄ , SiO ₂ , CI, SO ₄ , Na, Mg, K, Ca, pH, SC, DO
Precipitation Chemistry at Thompson Farm (event basis since 11/03)	DOC, DON, NO ₃ , NH ₄ , PO ₄ , SiO ₂ , CI, SO ₄ , Oxalate, Na, Mg, K, Ca, pH, SC
WHB and James Farm Well Fields (Monthly 0704 to 05/07; Quarterly since 5/07)	DOC, DON, NO ₃ , NH ₄ , PO ₄ , SiO ₂ , Cl, SO ₄ , Na, Mg, K, Ca, pH, SC, DO

Nitrate Over Time in the Lamprey River

Monthly Nitrate in the Lamprey River

Dissolved Organic Carbon Over Time in the Lamprey River

Surface water nitrate is best predicted by human population density

Cl and Na are related to Impervious Surfaces

Dissolved Organic Matter is Related to Wetland Cover

Lamprey, Ossipee and Oyster Sub-basins

Nitrogen Inputs and Outputs from the Lamprey River Watershed (2005)

Total N Input 15.4 kg N ha⁻¹ yr⁻¹

Food Fertilizer Rain and dry deposition

Total N Retention

84% (or 13.0 kg N ha⁻¹ yr⁻¹)

Stored or lost to atmosphere?

Total N Output 2.4 kg N ha⁻¹ yr⁻¹

0.82 kg DIN ha⁻¹ yr⁻¹ (5 % of N Inputs)

Mean Surface Water Nitrate Much Lower than Mean Groundwater Nitrate in Homeowner Wells

6 % of homeowner wells sampled reached or exceeded 4 mg NO₃-N L⁻¹ at least once during quarterly sampling regime